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Abstract

In this paper analytical approximations for the period of a generalized nonlinear van der Pol equation will be obtained

by using various asymptotic methods.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper a generalized nonlinear van der Pol equation will be studied. The following generalized van der
Pol equation:

€xþ xð2mþ1Þ=ð2nþ1Þ ¼ �ð1� x2Þ _x, (1)

where m; n 2 N and 0p�51, has already been studied by Waluya and van Horssen by using a perturbation
method based on integrating factors [1]. Hu and Xiong [2], Mickens et al. [3,4] also studied this equation by
applying the generalized harmonic balance method. It is also possible to apply the saw-tooth approach [5] to
analyze Eq. (1).

Oddness of both the numerator ð2mþ 1Þ and the denominator ð2nþ 1Þ of the exponent in Eq. (1) is
important. If one of the parts in this ratio is even then Eq. (1) is not an oscillator equation.

In Ref. [6] it is proposed to modify Eq. (1) in the following way, which enables one to consider a more
general class of oscillators:

€xþ sgnðxÞjxja ¼ �ð1� x2Þ _x; a40, (2)
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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where

sgnðxÞ ¼
þ1 for x40;

�1 for xo0:

�
(3)

For a ¼ ð2mþ 1Þ=ð2nþ 1Þ oscillator equation (2) is of course identical to Eq. (1). But the generalized form
of Eq. (2) allows the exponent a to take any positive real value (such as odd, even, rational or irrational, and so
on).

In order to get more insight in the period(s) of the periodic solution(s) of the generalized van der Pol
equation (2) three cases will be considered: a # 0, a!1, and a! 1. The parameter � is assumed to be small,
that is, 0o�51.
2. Integrating factor solution

By using an integrating factor approach Waluya and van Horssen [1] constructed asymptotic
approximations of the periodic solutions and their periods for Eq. (1). In Ref. [1] as parameter of the
asymptotic investigation � has been used. A straightforward analysis shows that the results of Ref. [1] can be
generalized to Eq. (2). Then one obtains as approximation for the period of the periodic solution that (for
� # 0 and for a fixed a with 0oao1):

TðaÞ ¼ 2
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

1þ a
p

A0:5ð1�aÞ
Z 1

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u1þa
p þ Oð�Þ, (4)

A ¼
J1ðaÞ
J2ðaÞ

� �1=2

, (5)

where

J1ðaÞ ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u1þa
p

du, (6)

J2ðaÞ ¼
Z 1

0

u2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u1þa
p

du. (7)

The substitution u1þa ¼ sin2 y leads to the following expressions:

TðaÞ ¼
4
ffiffiffi
2
pffiffiffiffiffiffiffiffiffiffiffi
1þ a
p A0:5ð1�aÞI3ðbÞ þ Oð�Þ, (8)

A ¼
I1ðbÞ
I2ðbÞ

� �1=2

, (9)

I1ðbÞ ¼
Z p=2

0

cos2 y sin1�2bydy ¼ 0:5Bð1� b; 1:5Þ ¼
Gð1� bÞGð1:5Þ
2Gð2:5� bÞ

, (10)

I2ðbÞ ¼
Z p=2

0

cos2 y sin5�6bydy ¼ 0:5Bð3� 3b; 1:5Þ ¼
Gð3� 3bÞGð1:5Þ
2Gð4:5� 3bÞ

, (11)

I3ðbÞ ¼
Z p=2

0

sin1�2bydy ¼ 0:5Bð1� b; 0:5Þ ¼
ffiffiffi
p
p

Gð1� bÞ
2Gð1:5� bÞ

, (12)

where Bð. . . ; . . .Þ is the Beta function (see Ref. [8]), Gð. . .Þ is the Gamma function (see Ref. [8]), with
b ¼ a=ð1þ aÞ.
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Of course, one can use for calculations expressions (8)–(12), but sometimes it is more convenient to use
approximate expressions with only elementary functions. To study the limiting cases a51; ab1 and a � 1 use
will be made of these approximate expressions involving only elementary functions.

3. The case 0oa51

For a # 0 (so, b # 0) one has

sin2by�1þ 2b lnðsin yÞ þ � � � (13)

and from Eqs. (10)–(12) (see Ref. [8])

I1ð0Þ ¼
1
3
; I2ð0Þ ¼

4
105
; I3ð0Þ ¼ 1. (14)

Expressions for I i may be obtained as series in b:

I i ¼ I ið0Þ þ bI
ð1Þ
i þ b2I ð2Þi þ � � � ; i ¼ 1; 2; 3. (15)

Then, using expressions (13)–(15), one obtains for b # 0:

I1�
1
3
þ 2bðln 2� 2

3
Þ, (16)

I2�
4
105
þ 16

45
bðln 2� 269

140
Þ, (17)

I3�1þ 2bð1� ln 2Þ. (18)

One can use Padé approximations [7] to improve the obtained result (18) for I3ðbÞ. A brief description of the
Padé approximations is as follows. Let the function F ðbÞ be represented by the Maclaurin series

F ðbÞ ¼
X1
i¼0

aib
i for b�!0. (19)

The ½m=n� Padé approximations are defined through the fractional rational functions
Pm

i¼0 bib
i=

ð1þ
Pn

i¼1cib
i
Þ, where the first mþ nþ 1 coefficients of the associated Maclaurin series coincide with the

first terms of the series (19). In our case the ½0=1� Padé approximation for I3 (see Eq. (18)) has the form:

I3�
1

1þ 2bðln 2� 1Þ
. (20)

In a similar way I1 and I2 can be approximated:

I1�
1

3 1þ 2bð2� 3 ln 2Þð Þ
, (21)

I2�
4

105ð1þ b=3ð269
5
� 28 ln 2ÞÞ

. (22)

It is worth noting, that the expression I1=I2 (see Eq. (9)) has a pole at the point a � 0:096, if one uses
approximations (16) and (17). So, one can use these approximations only for ao0:096. But if one uses the
Padé approximants (21) and (22), the pole of the expression I1=I2 occurs at the (non-physical) point
a ¼ �1:189. It should be observed that expression (20) has a pole at the point a � �2:59.
Table 1

Comparison of exact and approximate values of I3ðbÞ for the case 0oa51

a 0 1/2 2/3

Exact value (12) 1 1.19 1.39

Asymptotics (18) 1 1.16 1.25

Padé approximations (20) 1 1.18 1.33
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One can estimate the accuracy of the approximations on the basis of the exact expression (12) for I3ðbÞ. For
0oa51 one has 1oI35

ffiffiffi
p
p

. Some numerical results can be found in Table 1.
Based on these approximations the period TðaÞ of the periodic solution can readily be obtained.

4. The case ab1

One can introduce the parameter g ¼ 2=ð1þ aÞ and suppose that a!1 (so, g # 0). General ideas to
construct asymptotic approximations may be shown by using the integral I3:

I3 ¼

Z p=2

0

sin�1þgydy ¼
Z p=2

0

y�1þg
sin y
y

� ��1þg
dy�

Z p=2

0

y�1þg
dy

ðsin y=yÞð1� g ln½sin y=y�Þ

�

Z p=2

0

y�1þg 1þ 2
X1
k¼1

ð�1Þkþ1
ð2k�1 � 1ÞB2ky

2k

ð2kÞ!

" #
dy�

1

g
p
2

� �g
for g # 0, ð23Þ

where B2k are the Bernoulli numbers.
Expression (23) can be obtained by using for instance the standard formulas from Ref. [9]. Similarly,

I1�
1

g
p
2

� �g
, (24)

I2�
1

3g
p
2

� �3g
, (25)

A�
ffiffiffi
3
p p

2

� ��g
, (26)

T�
2p
g2

3ðg�1Þ=2g for g # 0. (27)

Now one can estimate the accuracy of the leading term of the asymptotic relations. Let us introduce the
quantities:

gI3 ¼ 0:5Bð0:5g; 0:5Þ � A1, ð28Þ

gI3�
p
2

� �g
� A2. ð29Þ

Numerical results can be seen in Table 2, where A1 is the exact value for gI3, and A2 is its asymptotic
approximation as given by Eq. (29).

For g ¼ 1 it follows from Eq. (27) that T ¼ 2p, and for g!1 it follows that T ! 0.

5. Asymptotics for a! 1

One can introduce the parameter k ¼ 1� ½2a=ð1þ aÞ� and suppose that a! 1 (so, k! 0). The following
relation can be used:

sinky ¼ yk
sin y
y

� �k

�yk 1þ k ln
sin y
y

� �� �
for k! 0.
Table 2

Comparison of approximate and exact values of gI3 for a!1

a 1 3 5 1

A1 p=2 1.30 1.20 1

A2 p=2 1.25 1.16 1
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Table 3

Comparison of approximate and exact values of I3 for a! 1

a 1.5 1 0.9 0.5 0.4

Exact value of I3 1.84 p=2 1.52 1.29 1.24

Approximate value of I3, formula (32) 1.79 p=2 1.53 1.37 1.33
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Then, for k! 0 it follows that

I1 ¼

Z p=2

0

sinkydy�
Z p=2

0

sin2þkydy��
p
4
þ
ðp=2Þkþ1

kþ 1
þOðkÞ, (30)

I2�
p
16
þOðkÞ, (31)

I3�
ðp=2Þkþ1

kþ 1
þOðkÞ. (32)

Some numerical results can be found in Table 3.
6. Matching of asymptotic expressions for ab1 and a51

The reviewer of this paper proposed to construct a function to obtain asymptotics for ab1 and a51. This
very difficult problem might be a subject for another paper, but as partial solution can be proposed the
following formula:

T ¼
4
ffiffiffi
2
p
½1þ ðA� 1Þaþ Aa2�ð1þ aÞ2

1þ a2
35þ 3a
1þ a

� �ð1�aÞ=4
, (33)

where A ¼ p=8
ffiffiffi
2
p

.
Formula (33) for a!1 tends to asymptotic values as given by Eq. (27), for a ¼ 1 it gives T ¼ 2p, and for

a ¼ 0 it gives the values as given by formulas (16)–(18).
7. Conclusions

The obtained asymptotic results give the possibility to use simple analytical expressions for the period of the
generalized van der Pol equation for any of the values of the parameters a. More exactly:
�
 the asymptotics (20)–(22) can be used for 0oao2=3;

�
 the asymptotics (30)–(32) is valid for 0:5oao1:5; and

�
 the asymptotics (24)–(27) can be used for a41.
It is worth noting, that we have overlapping domains of asymptotic validity.
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